
N95- 19767

PalymSys TM - An Extended Version of CLIPS

for Construction and Reasoning Using Blackboards

Travis Bryson Dan Ballard

Reticular Systems, Inc.

4715 Viewridge Ave. #200

San Diego, CA 92123

Abstract

This paper describes PalymSys rM -- an extended version of the CLIPS language that is designed to facilitate the
implementation of blackboard systems. The paper first describes the general characteristics of blackboards and shows

how a control blackboard architecture can be used by AI systems to examine their own behavior and adapt to real-time
problem-solving situations by striking a balance between domain and control reasoning. The paper then describes the
use of PalymSys ru in the development of a situation assessment subsystem for use aboard Army helicopters. This
system performs real-time inferencing about the current battlefield situation using multiple domain blackboards as well
as a control blackboard. A description of the control and domain blackboards and their implementation is presented.
The paper also describes modifications made to the standard CLIPS 6.02 language in PalymSys ru 2.0. These include:

1) A dynamic Dempster-Shafer belief network whose structure is completely specifiable at run-time in the consequent
of a PalymSys rM rule, 2) Extension of the run command including a continuous run feature that enables the system to
run even when the agenda is empty, and 3) A built-in communications link that uses shared memory to communicate
with other independent processes.

Introduction

This paper describes the extensions made to the CLIPS 6.02 language during the design and

implementation of a Situation Assessment (SA) expert system for use aboard Army helicopters.
An SA system uses data gathered from external environmental sensors, intelligence updates, and

pre-mission intelligence to monitor and describe the external environment. An SA system searches

for external entities of interest (EEOI), recognizes those EEOIs, and then infers high-level at-

tributes about them. An EEOI is anything that has the potential for affecting the planned rotorcraft

mission. EEOIs are primarily (although not necessarily) enemy forces. In order for the system to
perform the inferences necessary to develop an assessment of the current situation, it must utilize

extensive knowledge about the EEOIs including knowledge about their doctrine, capabilities, prob-
able mission objectives, intentions, plans, and goals. All of these elements combine to form a com-

plete situation description. For a thorough description of the domain problem see [1].

The SA system has been implemented in an extended version of CLIPS called PalymSys ru .
The SA system implementation makes use of two domain blackboards - current assessment and

predicted assessment, as well as a control blackboard for overall control of the system. Palym-

Sys ru provides a reasoning under uncertainty mechanism that handles contradictory and partially

contradictory hypotheses and allows multiple hypotheses to coexist. A continuous run option has

been added that allows the system to run even when the agenda is empty. Continuous run enables
the system to wait for new environmental state data to be provided by the system's sensor sub-

systems. As new data becomes available, additional reasoning is then performed.

Blackboards

The SA system uses a blackboard architecture as a paradigm for solving the situation assess-

ment problem. The blackboard architecture approach to problem solving has been a popular model
for expert system design since the development of the Hearsay-II speech understanding program
in the 1970s. It also serves as a framework for the blackboard control architecture - an extension

of the blackboard architecture - which is the method of control used in the SA system. The black-
board model for problem solving consists of three primary elements [2, 3]:

Knowledge Sources: The knowledge necessary to solve the problem is partitioned into sep-

arate and independent knowledge sources. The independence of knowledge sources means that

major modifications to the system should not be necessary when more rules are added to the sys-

377
PAGE BLANK NOT FILMED :;,.._o_.

tern. In CLIPS and PalymSys rM, knowledge sources take the form of rules.

Blackboard Data Structure: A global data structure where knowledge that has been brought

to bear on the problem is stored. The blackboard represents the current state of the problem solu-

tion. The system attempts to combine and extend partial solutions that span a portion of the black-

board into a complete problem solution. Communication between knowledge sources takes place

solely via the blackboard. In CLIPS, a blackboard data structure can be represented by objects that

encapsulate the knowledge at each level. The knowledge is contributed by the consequent of rules
whose antecedent has been satisfied.

Control: Each of the knowledge sources opportunistically contributes to the overall problem

solution. Each knowledge source is responsible for knowing the conditions under which it will be

able to contribute to the problem solution. In CLIPS, this means deciding which rule or set of rules

should fire next given the current state of the blackboards. Our method for achieving this is the use
of the control blackboard architecture. The control blackboard is an extension of the traditional

blackboard architecture and will be discussed in detail later in this paper.

Control

Blackboard

i'_ Control I'_ ,,,_

I Sour_l _t=3

Figure 1. The Situation Assessment System Architecture

The SA system uses three concurrently executing blackboards for developing a problem so-
lution. These are a prediction blackboard, an assessment blackboard, and a control blackboard.

Each blackboard provides storage for the problem solution state data. The assessment blackboard

contains the current situation description and is primarily concerned with the current intentions, ca-
pabilities, and commitments of EEOIs. The prediction blackboard contains predictions for EEOI

behavior and the predicted situation description. The control blackboard contains the knowledge

that manages and prioritizes all of the rules and provides for overall control of system problem-
solving behavior.

Designing the SA Assessment Blackboard

The blackboard model provides only a general model for problem solving. It falls far short
of an engineering specification for actually developing a complete blackboard system in CLIPS.

However, this general model does provide significant insight in how to implement complex knowl-

edge-based systems. The first step in designing a blackboard for a given domain problem is to sub-

divide the problem into discrete subproblems. Each subproblem represents roughly an independent

378

area of expertise. The subproblems are then organized into a hierarchy of levels from least to most

abstract. Correctly identifying the problem hierarchically is crucial and will often be the primary

factor that determines the effectiveness of the problem-solving system (or whether the problem can
be solved at all). Blackboards sometimes have multiple blackboard panels, each with their own set

of levels. That is, the solution space can be segmented into semi-independent partitions.
The knowledge sources used by the system are CLIPS rules that have access to the informa-

tion on the blackboard. Communication and interaction among rules is solely via the blackboard

data structure. Even knowledge sources on the same level must share information through the
blackboard. Encoded within each knowledge source are the conditions under which it can contrib-
ute to the problem solution.

Figure 2 is an illustration of the assessment blackboard in the SA system. The assessment

blackboard is divided into a seven-tiered hierarchy. These levels are concerned with developing
an environmental state description, characterizing an EEOI, interpreting EEOI plans, roles, and in-

tents and developing a summary description of the overall situation. Each level of the assessment

blackboard is a part-of hierarchy that represents a portion of the situation assessment solution for

a particular EEOI. There is a gradual abstraction of the problem as higher levels on the blackboard

are reached. Information (properties) of objects on one level serve as inputs to a set of rules which,

in turn, place new information on the same or adjacent levels. During the problem-solving process,

more advanced hypotheses and inferences are placed at higher levels of the blackboard.

The blackboard architecture provides a model for the overall problem-solving (inferencing)
process. This model is used to structure the problem domain and identifies the knowledge sources

needed to solve the problem. While knowledge sources are independent and each contributes to a

partial solution, each knowledge source must be designed to fit into the high-level problem-solving
blackboard hierarchy created by the system designer.

Situation Slatus Deecrlptlon

Pllln

P_nl

Figure 2. The Assessment Blackboard

Using CLIPS Objects as the Blackboard

Information on the assessment blackboard is represented as CLIPS objects. Figure 3 shows

the object representation for knowledge in one of the SA modules. This figure shows the structure
in the global plan function (GPF) module at the Role Classification level of the blackboard hierar-

379

chy.
A multi-agentplan hypothesisobjectis createdby the systemto represent the high-level

multi-agent plan of a group of EEOIs where each has the same high-level mission objective. Multi-

agent hypotheses and their associated entity plans are stored as objects on the blackboard. An en-

tity plan object contains the sequence of plan elements (activities) that a particular EEOI must ac-

tually perform within the context of the associated multi-agent hypothesis. For instance, an EEOrs

multi-agent plan might be to capture a refueling depot. A number of EEOIs will be needed to

achieve this objective including a security force, a main attack force, and surveillance for the at-

tacking force. The EEOI's entity plan might then be surveillance for the attacking force. The multi-

agent hypothesis object called capture refueling depot encapsulates information local to the role

classification level like formation information, hypothesized locations, and typical vehicle types.

Other objects can access this information only through the multi-agent hypothesis object's defmes-
sage handlers.

Multl-/_l Hypthesls Object Entity Plan Objects

I Objective:,Capture Refueling Dol:)O¢ I I Plan: Surveillance .

Entity Plan Instance Li_ | J Plan Element Instance:

#r "_. I I Plan: Main Attack

/ "H_ yp°thesized LOcallOn:

/ I Ir'anE'eTe"t'n_'nce

Plan: Surveillance [Plan: Main Attack
B

Entity 4 1 _it_/12

belief • • • • •

llef

I)41_

Figure 3. Blackboard Object Structure

The capture refueling depot object has a multislot field that contains the list of entity plan

instances necessary to carry out its objective. Objects at different blackboard levels which are per-

manently linked are connected via instance lists. The entity plan instances, in turn, contain the lists

of plan elements necessary to carry out the entity-level plan. The plan element lists axe encapsu-

lated within the entity plan objects. When the need to do so arises, entity plan objects will search

for plan belief objects that correspond to their plan via pattern matching. They search for plan be-
lief objects instead of parsing a pre-defined list because the links in this case are not permanent.

The plan belief objects are entity specific and store the degree of belief in which the system believes

that a particular EEOI is performing a particular plan. An EEOI may change entity plans or the

system may gather evidence that leads it to believe the EEOI is actually performing a different plan.

Thus the links between entity plan objects and plan belief objects will change over time.

CLIPS Objects are an ideal data structure for blackboard implementation because they offer

encapsulation and easy processing of lists. Recall that the essence of the blackboard approach is

380

thathigherlevelssynthesizetheknowledgefrom thelower levels. Theobjects at one blackboard

level will typically need access to a list of conclusions from the preceding levels. In our approach,

objects are always looking down the blackboard, asking other objects for only the information they

need. The knowledge at each blackboard level is well encapsulated. Knowledge sources can thus
be formulated generically.

The Control Blackboard Architecture

At each point in the problem solving process there are typically a number of knowledge

sources that can contribute to the problem solution. Every intelligent system must solve the control

problem: i.e., determine which knowledge source should next be brought to bear on the problem

solution. In order to solve the control problem it is necessary that control decision making be

viewed as a separate problem-solving task. The system must plan problem-solving actions using

strategies and heuristics that will help it solve the control problem while balancing efficiency and

correctness. The system must become aware of how it solves problems and intelligently guide the
problem-solving process.

Explicitly solving the control problem involves providing a body of meta-level (heuristic)

knowledge about the domain that is used to guide the control planning process [4]. With such

knowledge, the system can reason explicitly about control because the system has access to all of
the knowledge that influences control decisions. Meta-level rules then choose domain rules or sets

of domain rules that are most appropriate for the current problem-solving situation.
Control knowledge sources interact solely via the control blackboard. The control black-

board is where control knowledge sources post all currently relevant meta-level system knowledge.
Partial and complete control plans are stored here. The system also posts high-level control heu-

ristics and problem-solving strategies on the control blackboard.

A well designed control mechanism can make sophisticated meta-level decisions about the
problem-solving process, it will seek to make desirable actions more feasible and feasible actions

more desirable. It will make plans to seek out important obtainable information when that infor-

mation is missing. The control mechanism must carefully balance the time spent solving control

problems with time spent carrying out domain tasks. It must be aware of how it is solving domain

problems and change problem-solving methods to match the situation requirements.

The Control Problem in SA

The SA system is a real-time system that must perform complex inferences within very de-

manding time constraints. Control is critical in a real-time system because by definition problems
must be solved before a deadline. The SA system has a set of meta-level control rules that interact
via the control blackboard. The control rule set uses heuristics to evaluate situation characteristics

which are used to choose one or more problems from a pool of several competing domain prob-

lems. Once the important domain problems are chosen, an efficient control plan is constructed to

solve them. A control plan consists of a series of rule groups, or modules, which will be sequen-

tially accessed by the system. A message to work with a specific entity is frequently sent along
with the control plan.

Control planning is a way of incorporating efficiency into the system. The meta-level priority
criteria do not have to be recalculated every cycle while the system is following an established con-

trol plan. The system balances the degree of commitment to the execution of control plans with a
variable sensitivity to run-time conditions [5]. The degree of commitment is a function of the un-

certainty about the helicopter's actual environment. If the situation is dangerous, the system will

lower its commitment to the control plan and heighten its sensitivity to run-time conditions (i.e.,
incoming sensor data).

Figure 4 is a diagram of the control blackboard used in SA. As in the assessment and predic-
tion blackboards, a multilevel hierarchical blackboard structure is used. The policy level is where

381

globalfocusingdecisions are stored. These are heuristically generated at run-time depending on

the state of the problem-solving situation. The problem level is where domain problems presented

to the system are placed. The strategy level is where strategies (high-level general descriptions of

sequences of actions) are stored. Generating a strategy is the first step in making a plan. Strategy

decisions are posted at the strategy level for all accepted problems. A strategy decision is nothing
more than a constraint on future actions. The focus level is equivalent to the strategy level but is

populated by more specific strategies called foci. The action level represents the actual sequence

of actions chosen by the system to solve the problem [6]. The action level is implemented by the

CLIPS agenda mechanism.

Policy Level

Problem Level

Strategy Level

Focus Level

Action Level

Figure 4.

GlobalFocus

ProblemRequests

High-LevelSolutions

FocusedSolution

Sequenceof Knowledge
Sources

94134

Control Blackboard Hierarchy

Meta Control Plans

The knowledge represented on each of the control blackboard levels increases in abstraction

from the bottom level to the top level. However, control is a top-down inferencing process. Unlike

the domain blackboards, knowledge at the higher blackboard levels serves as input for the knowl-

edge sources at the lower control blackboard levels. A meta control plan solves the control problem

for the control part of the SA system. A meta control plan object is constructed at system start-up

that contains the following sequence of phases:
• check for new data

• post foci at policy level

• remove problems (if appropriate)
• request problems

• accept problems

• prioritize problems

• choose problems
• formulate strategy

• formulate plan

• execute a control plan

• record any plan completions and perform system maintenance

The control rules are partitioned by phase. There is a rule set for accepting problems, prior-
itizing problems, etc. The early phases deal with the higher levels on the control blackboard. The

system will cycle through the meta control plan sequentially unless a message is passed from one
module to another.

One situation in which message passing occurs is when the system suspects that a new do-

main problem should be reevaluated in light of the particular domain problem that has been chosen.

For instance, when the system is making a plan to do a situation assessment, it will reconsider data

that has not yet been integrated into the system. The data may not be intrinsically important. But

in the context of doing a situation assessment, the system may decide to integrate part of the un-

382

processeddatabeforedoingthesituationassessment.Integratingthedatafirst oftenaddsvalueto
the situationassessmentbecausethesystemwill havemoreinformationon which to baseits as-
sessment.Thisaddedvalueis addedto thepriority of thedataintegrationplanrequest.Thesystem
goesbacktotheprioritize problem phase and if the data adds enough value to the situation assess-

ment problem, it constructs an object to solve the integrate data problem. The data integration

problem instance is added to the list of plan elements in the situation assessment plan object. The
actual plan elements to integrate the data into the system are encapsulated within the data integra-

tion control plan object.

Heuristics used by the Control Planner

A real-time SA system is continuously supplied with sensor updates, pilot requests for infor-
mation, anticipation of possible future events, and a plethora of cognitive actions that must be taken

in order to assess the current situation. Thus, most of the work of the control part of the system is

in deciding what problem to solve. Following are the five domain problems that the SA system
solves:

1) Integrate new data into the domain blackboards
2) Focus sensors

3) Generate a current situation assessment

4) Generate a predicted assessment for some opportune time in the future

5) Generate a predicted assessment for time T seconds from the present

In order to solve the control problem, the SA system opportunistically chooses problems from

among these five domain problems and makes efficient plans to solve them. This approach pro-

vides a built-in well-defined external interface to the system. Problems presented to the SA system
by an external agent (e.g., an external system planner or the pilot) are placed in with the problems

the SA system has presented to itself at the problem level of the control blackboard.

In order to illustrate the meta-level heuristics that the SA system uses to choose from among

competing domain problems, we provide an example of how the SA system integrates new data

into the domain blackboard (problem 1 above). The SA system places incoming sensor and intel-

ligence data at the survey level of the assessment blackboard. This new data triggers a problem

request at the problem level of the control blackboard. When the SA system decides to integrate

the new data, the control rules make and carry out a plan that consists of an ordered sequence of

domain modules which will be sequentially examined by the SA system.

All incoming information is rated for importance. EEOIs that have already been encountered

by the system are given Entity Assessment Ratings (EARs):

EAR = [Confirmed(danger), Plausible(danger)]

The EAR is a belief function that represents the degree to which an EEOI is a threat to the

rotorcraft. The confirmed danger is the degree to which the system has confh'med that an EEOI is

a danger to ownship. The plausible danger (or potential danger) is the worst-case danger that an

EEOI presents to ownship at this time. Both of these numbers must lie in the range [0, 1]. The

plausible danger is always greater than or equal to the confirmed danger. The less the system
knows about an EEOI, the greater the difference between the plausible and the confirmed danger.

The EAR is synthesized into an Interesting Rating:

Interesting Rating = 0.7 * Confirmed danger + 1.3 * ability_garner0 * (Plausible danger - Con-

firmed danger)

The system evaluates EEOIs as "more interesting" if there is a large gap between the plausi-

ble and confirmed dangers. This means EEOIs that might be dangerous but about which there is

383

little knowledgewill be rated or ranked more interesting. Ability_garner is a function that calcu-

lates the degree to which the system thinks it currently has the ability to gather more information

about the EEOI. When new data come in about an EEOI, we can use that entities' previously cal-

culated Interesting Ratings to prioritize it.

When data about a previously unencountered entity arrives, SA the system favors the integra-

tion of the information into the domain blackboard if the data is about a nearby EEOI. The SA sys-

tem especially favors it if automatic target recognition (ATR) has managed to already confirm an

EEOI's vehicle type. Data about new EEOIs is considered intrinsically more important than data

about previously encountered entities. The SA system attempts to reject duplicate information be-

fore any attempt is made to rate it or integrate it. The control planner always attempts to control
the sensors to gain more information about interesting EEOIs.

The amount of time spent generating and evaluating heuristics must be balanced with the

amount of time spent executing domain rules. It is possible to expend too many computational re-

sources prioritizing problems and not enough time actively solving them. Entity Assessment Rat-

ings and Interesting Ratings require processing resources for calculation. However, they must be

calculated anyway for use by other parts of the system and these calculations are entirely procedur-

al or algorithmic and are therefore computationally relatively inexpensive. Very little extra pro-
cessing power is required to rate entities in this way. Such overlapping requirements often enable

more sophisticated meta-level control knowledge to be produced. The results of the inferencing

process represented at various blackboard levels by symbolic abstractions can thus be used as input

for procedural/algorithmic computation that, in turn, produces useful metal-level control knowl-

edge.

Using Dynamic Salience for Control

The planning approach to control has the disadvantage of always firing each of the rules that

pertain to the chosen domain problem within the modules listed in the control plan. Another layer

of control can be attained by directing the system to fire only the subset of eligible domain rules
that best apply to the current domain problem. This flexibility is achieved within PalymSys TM by

using an expanded form of the salience command.
The modifications to the salience command in PalymSys TM are based on the work done by

Robert Orchard of the National Research Council of Canada in his extended version of CLIPS

called BB_CLIPS [7]. The added syntax, called rule features, are descriptive characteristics of the

knowledge contained in a rule that are placed within the antecedent of the rule.

RULE : pred_pe2

If the EEOI will be able to see ownship and will be able to hit ownship and the EEOI's

plan is combat_recon, main_attack, close_air_support, artillery, or guard then

EE will probably be engaging you in the future (60%). If not, then we can't be sure

what the EEOI will do next (40%).

(de frule prec[_plan_element 12

(declare ; feature list

(salience 200) ; salience type

(reliability 35) ; integer type

(importance 25) ; integer type

(efficiency medium)) ; set type

(Module_focus (focus domain)(sub_focus pred_plan_element)(entity_focus all) (time_focus

?time&: (>= ?time3)) (level policy) (BB CONTROL))

(object (is-a EEOI_Pred_location_long) (label ?name) (dist_from_ownship ?dist&: (< ?dist

6)) (level interpretation) (BB PREDICTION)) ; ; all EEs < 6km away.

(object (is-a EEOI Pred_capability_long) (label ?name) (see_capability

?seecap&: (>= ?seecap .5)) (hit_capability ?hc&: (> ?hc .5)) (level pred_cap) (BB ASSESSMENT))

(object (is-a EE01_Plan) (label ?name) (propagation ?prop)

384

(type ?type& : (members ?type (creates combat_recon long_range_recon guard_forward

guard_flank guard_rear main_attack close_air_support))) (level plan_interp) (BB ASSESSMENT))

:>

(assert_belief ?name pred_lolan_ele_nent ?prop ".6 ENGAGE_OWNSHIP .4 ALL")

)

Each feature has an associated dynamic salience value determined by its feature arguments.

PalymSys TM has a combining function that evaluates the salience of each rule between rule firings.

The feature argument itself is a pointer to a dynamic data structure of salience values that is mod-

ified by control rules at run-time. For instance, if the system is suddenly faced with a time con-

straint, a control decision can be made to globally raise the value of the efficiency feature.
A new feature in CLIPS 6.0 is the (set-salience-evaluation every-cycle) command which en-

ables salience values to be calculated dynamically at run-time between rule firings. It is possible

to achieve the same functionality described above from within the CLIPS 6.0 shell by placing a

function as the argument for the salience command. Between rule firings, the function dynamically

computes salience values which are based on global control variables whose values have been de-

termined by control decisions.

A Hybrid PalyrnSysrM/C++ Belief Network

Reasoning under uncertainty is a necessity for a situation assessment system. The SA system

must make prescient inferences about such things as an EEOI's plan or the associated elements

(steps) in that plan. The EEOI's plans and plan elements cannot be known for certain until various

activities are explicitly observed. Other inferences, such as an EEOI's intent or an EEOI's predicted

plan element, can never be known for certain. Hypotheses must be based on incomplete and unre-
liable evidence because the battlefield is a complex, uncertain environment. Reasoning under un-

certainty requires a probabilistic model of reasoning that supports reasoning using contradictory

and partially contradictory hypotheses in which the system has varying degrees of confidence.
PalymSys TM enables the user to construct a Dempster-Shafer (D-S) belief network quite eas-

ily. A command line interface allows the user to specify size, structure and number of instances of
the network at run time. A belief network propagates the uncertainty associated with a particular

piece of knowledge throughout the entire hierarchy of hypotheses that depend upon it. The SA con-

trol planner in conjunction with the Rete Pattern Matching algorithm handles the belief propagation

through the system hierarchy. When rules are added to the system, no modifications of existing

C++ or PalymSys TM code are necessary. By placing a single function call on the consequent of the

added rule(s), the system will incorporate the new rule(s) into the belief network automatically. A

formal explanation of Dempster-Shafer theory is beyond the scope of this paper. Such detailed pre-
sentations can be found in [8, 9, 10]. However, the CLIPS modifications described here can be

applied to a monotonic, feed-forward belief network of any type (i.e., Bayesian).
A frame of discernment is a set of mutually exclusive hypotheses. Exactly one hypothesis in

a frame of discernment is true at any one time. Each module that uses D-S reasoning in SA has its

own frame of discernment. For example, the frame of discernment corresponding to the Plan Ele-

ment module is the set of fourteen distinct plan elements that an entity is capable of performing

within the context of all possible plans. When an entity is encountered, it is assumed to be perform-

ing one and exactly one of these plan elements. The purpose of the plan element module is to assign
belief values to each of the members of the plan element frame of discernment. A set of propaga-

tion values for the plan element frame of discernment is also calculated. The propagation values

serve as input to other frames of discernment that use plan elements as evidence.

Recall that the SA system follows entity specific control plans in order to integrate new data

into the system. A control plan is an ordered list of modules that the system will sequentially visit
to solve a domain problem. The exact order of the control plan will vary depending on what type

of data is being integrated into the system. When a control plan element is executed, a particular

385

modulefires its rules,assignsbelief to themembersof its frameof discernment,andthencontrol
proceedsto thenext modulein thecontrolplanwhich is typically on thenexthigher levelwithin
thedomainblackboardhierarchy.

A typical SA domain rule within the belief network will look much like the following rule
from the Plan module:

RULE s plan_rulel2

Doacz4ptlonz

;; If the EE's current Plan Element is Reporting then his Plan might be (40%)

;; surveillance, combat recon, or long range recon. It also might be, to a

;; slightly lesser degree (30%), guard forward, guard flank, or guard rear. If

;; it's not in those two sets, then the EE could be performing any Plan (30%).

(defrule plan_rulel2

(Module_focus (focus domain) (sub_focus plan) (entity_focus ?name)

(level policy)(BB CONTROL))

(object (is-a EEOI Plan_element) (label ?name) (type report)

(propagation ?prop_value&: (> ?prop 0))(level plar!_interp)(BB ASSESS))
=>

(assert_belief ?name Plan_Module ?prop_value ".4 SUR CRP LRRP .3 GFR GFL GR .3 ALL')

)

The variable name is needed as a tag because SA makes an instance of the belief network for

each new EEOI encountered. In this case, the assert_belief function places the belief into the frame

of discernment associated with the Plan module with a propagation value of prop_value. The

Module_focus template values in the rule will allow this rule to fire only when the system is firing

the rules on the assessment blackboard in the plan module. In this way, the control plan assures

that the rules in each frame of discernment for a particular EEOI are finished firing before advanc-

ing up to higher levels on the blackboard. The same technique can be used with any monotonic
feed-forward blackboard belief propagation scheme.

When evidence is obtained from another frame of discernment, as is the case with the

EEOI_plan_element object in the rule above, the propagation value is also sent to the assert_belief

function. Evidence without a propagation value associated with it is assumed to have a probability

of truth of one. However, the system can easily adapt to any uncertain data by attaching a propa-
gation value to them.

The last rule fired within each module calls the function get_belief to access the appropriate
belief and propagation values for the module's frame of discernment. The propagation values will

be passed to the next level up in the blackboard hierarchy via the propagation slot in the object that
corresponds to the current entity and the current blackboard level.

New domain rules are easily added to the system by placing the assert_belief function on their

RHS. No modifications to the reasoning under uncertainty function code are required since prop-

agation is handled entirely by the Rete Pattern Matching algorithm and the SA control planner.

Simulation and Test Environment Interface

SA uses interprocess communication to communicate with our rotorcraft mission simulation

and test environment (STE). The STE is a graphical simulation test bed written in C++ and imple-
mented on a RS/60(0) workstation. During simulation runs, the STE sends SA sensor information

and SA sends the STE directional parameters to control the sensors. A communications class was

written for the STE and integrated with PalymSys TM. Shared memory in our system is accessed

via the standard system C libraries<sys/shm.h> and <sys/types.h>. More specifically, the STE

uses the function calls shnmt, shmget, shmdt to attach a process, grab the shared memory and detach
the process, respectively.

Standard CLIPS terminates when the agenda is empty. PalymSys TM can be directed to run

continuously even though the agenda is empty by adding an optional argument to the run com-

mand. The inference engine will idle, waiting for facts to be asserted into the system. This capa-

386

bility is essentialwheneverthe systemdependson an independentprocess,like the STE, as a
sourcefor factassertions.

Threefunctionswereembeddedinto PalymSysTM in order to communicate with the STE.

One function checks the communications link to see if information had been passed over from the

STE. The maximum buffer size was 200 characters, so the PalymSys TM function got the name of

a file from shared memory that had just been created by the STE. Another PalymSys TM function

reads the file just created by the STE and asserts the contents as facts into the PalymSys TM fact base

using the AssertString CLIPS C library call. Finally, another function lets the STE know via shared

memory when SA has sent it information via file transfer. This two-way real-time interprocess

communication provides a realistic simulation of a rotorcraft environment.

Summary and Conclusions:

We have implemented a situation assessment blackboard expert system in PalymSys TM -- an
extended version of CLIPS. Blackboards are an excellent paradigm for CLIPS expert system im-

plementations. The control blackboard architecture is especially well-suited to real-time applica-
tions like SA. We developed a control planner in PalymSys TM that chooses the most important

problems to solve based on complex meta-level situation characteristics. The control planner cre-

ates domain plans to solve the problems that it chooses. SA uses a monotonic feed-forward Demp-
ster-Shafer belief network implemented in C++. The size and number of instances of the network

is dynamic and completely controlled at run-time from the PalymSys TM shell. Finally, we inter-

faced the SA system to our Simulation and Test Environment using interprocess communication

techniques. A continuous run feature was added which enables the inference engine to idle even

when the agenda is empty.

Acknowledgments
Mr. Joe Marcelino was instrumental in the implementation of the assessment and prediction

blackboards. Mr. Richard Warren implemented the terrain reasoning system. Mr. Jerry Clark pro-

vided invaluable advice on the reasoning under uncertainty mechanism used in SA. Mr. Clark

served as the rotorcraft domain expert on this project. Mr. Steve Schnetzler implemented the in-

terprocess communications between SA and the Simulation and Test Environment.

Bibliography

[1] D. B allard and L. Rippy, "A knowledge-based decision aid for enhanced situational aware-

ness," in Proceedings of Thirteenth Annual Digital Avionics Systems Conference, Phoenix,

AZ, 1994, in press.
[2] H.P. Nii, "Blackboard Systems - Part I," AI Magazine, vol. 7, no. pp. 38 - 53, 1986.

[3] H.P. Nii, "Blackboard Systems - Part II," AIMagazine, vol. 7, no. 4, pp. 82 - 107, 1986.

[4] N. Carver and V. Lesser, "A planner for the control of problem-solving systems," IEEE

Transactions on Systems, Man and Cybernetics, vol. 23, no. 6, pp. 1519 - 1536, 1993.

[5] B. Hayes-Roth, "Opportunistic control of action in intelligent agents," IEEE Transactions

on Systems, Man and Cybernetics, vol. 23, no. 6, pp. 1575 - 1587, 1993.

[6] B. Hayes-Roth, "A blackboard architecture for control," Artificial Intelligence, vol. 26, pp.
251 - 321, 1985.

[7] R. Orchard and A. Diaz, "BB_CLIPS: Blackboard extensions to CLIPS," in Proceedings

of First CLIPS Conference, Houston, Texas, 1990, pp. 581 - 591.

[8] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

San Mateo, CA: Morgan Kaufmann, 1988.

[9] G. Shafer, A Mathematical Theory_ of Evidence. Princeton, NJ: Princeton University Press,
1976.

[10] G. Shafer and J. Pearl, Uncertain Reasoning. San Mateo, CA: Morgan Kaufmann, 1990.

387

